Sustainable Radon Mitigation through Optimized HVAC Scheduling

Christopher Kitras, John D. Beard, James D. Johnston, Philip Lundrigan

Brigham Young University

Outline

- Motivation
- Experiment Design
- Evaluation
- Conclusion

Outline

- Motivation
- Experiment Design
- Evaluation
- Conclusion

3

BYU

What is radon?

- Naturally occurring, toxic, radioactive gas
- Second leading cause of cancer in US
- Measured in picoCuries per Liter (pCi/L)
- EPA limit of <4.0pCi/L

https://hif.wikipedia.org/wiki/Radon#/media/file:Electron_shell_086_Radon.svg

Radon Detection

- Passive radon detection
 - Activated Charcoal (short term)
 - Alpha Tracking (longer-term)
- Continuous Radon Monitors (CRM)
 - Every hour after burn-in period

Radon Mitigation

- Active methods
 - Collect and expel radon through dedicated pipes
- Passive methods
 - Sealing the building envelope
- Expensive on larger scale

https://www.protectenvironmental.com/wp-content/uploads/2024/07/Attic-Mitigation-garage.png

The Problem

- Traditional methods are expensive and complex
 - Bigger footprint
 - Complex building envelope
- Increased exposure to faculty and staff

Our Solution

- 1. Characterize radon with CRMs
- 2. Identify times with highest exposure
- 3. Develop optimized HVAC schedule
- 4. Incur as little extra cost as possible

https://hvacrschool.com/wp-content/uploads/2021/07/airflow.png

Outline

- Motivation
- Experiment Design
- Evaluation
- Conclusion

BYU

Experiment Setup

• Place radon sensors in 3 different HVAC Zones

BYU

Experiment Seasons

- Place radon sensors in 3 different HVAC Zones
- Measure for a year, excluding summer

Experiment Schedules

- Place radon sensors in 3 different HVAC Zones
- Measure for a year, excluding summer
- Three different periods
 - Control
 - Extended
 - Optimized

• Average radon values by hour of day by day

• Use building's occupied time as frame of reference

• Characterize radon decay by linear regression

• Shift the slope to reach threshold at occupied start

BYU

• Determine start time from projected decay slope

BYU

Outline

- Motivation
- Experiment Design

BYU

- Evaluation
- Conclusion

- Compare control start times with optimized start times
- Saved multiple hours per week

DoW	M				Т		W				Th		F			
Zone #	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	
W↓	05:33	06:55	07:00	06:23	06:44	07:00	05:48	7:00	07:00	05:38	07:00	07:00	06:12	07:00	07:00	
Sp	05:15	04:40	07:00	07:00	07:00	07:00	06:49	06:49	07:00	07:00	07:00	07:00	05:12	07:00	07:00	
F	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	
$\mathbf{W}\uparrow$	07:00	05:08	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	
Saved	0:42	-0:17	4:00	3:23	3:44	4:00	2:37	3:11	4:00	2:38	4:00	4:00	1:24	4:00	4:00	

- Compare control start times with optimized start times
- Saved multiple hours per week

DoW	M				Т			W			Th		F			
Zone #	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	
W↓	05:33	06:55	07:00	06:23	06:44	07:00	05:48	7:00	07:00	05:38	07:00	07:00	06:12	07:00	07:00	
Sp	05:15	04:40	07:00	07:00	07:00	07:00	06:49	06:49	07:00	07:00	07:00	07:00	05:12	07:00	07:00	
F	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	
W↑	07:00	05:08	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	
Saved	0:42	-0:17	4:00	3:23	3:44	4:00	2:37	3:11	4:00	2:38	4:00	4:00	1:24	4:00	4:00	

- Compare control start times with optimized start times
- Saved multiple hours per week

DoW	M				Т		W				Th		F			
Zone #	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	
W↓	05:33	06:55	07:00	06:23	06:44	07:00	05:48	7:00	07:00	05:38	07:00	07:00	06:12	07:00	07:00	
Sp	05:15	04:40	07:00	07:00	07:00	07:00	06:49	06:49	07:00	07:00	07:00	07:00	05:12	07:00	07:00	
F	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	
$\mathbf{W}\uparrow$	07:00	05:08	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	
Saved	0:42	-0:17	4:00	3:23	3:44	4:00	2:37	3:11	4:00	2:38	4:00	4:00	1:24	4:00	4:00	

- Compare control start times with optimized start times
- Saved multiple hours per week

DoW	Μ			Т			W				Th		F			
Zone #	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	
W↓	05:33	06:55	07:00	06:23	06:44	07:00	05:48	7:00	07:00	05:38	07:00	07:00	06:12	07:00	07:00	
Sp	05:15	04:40	07:00	07:00	07:00	07:00	06:49	06:49	07:00	07:00	07:00	07:00	05:12	07:00	07:00	
F	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	
$\mathbf{W}\uparrow$	07:00	05:08	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	07:00	
Saved	0:42	-0:17	4:00	3:23	3:44	4:00	2:37	3:11	4:00	2:38	4:00	4:00	1:24	4:00	4:00	

HVAC End Time

- End times make no difference on radon saturation
- Saved additional hour of operation time per day

B

Health Impact

• Overall radon exposure decreased with active mitigation across all zones and seasons

B

Obstacles Encountered

- Not allowed to automate
 - Person-in-the-loop
 - School schedule
- Optimized schedules can make people uncomfortable
 - Either too warm/cold if too early/late

Outline

- Motivation
- Experiment Design
- Evaluation
- Conclusion

Conclusion

- Our framework successfully provides a targeted approach to mitigating radon with the HVAC
- Saves time and energy
- Designed to fully integrate into schools with any level of access to HVAC system

Questions?

