Interactive Underwater Acoustic
Simulator with Ray Tracing

Ashton Palacios and Chris Kitras

(-ray)
plotssp environment
(.env)
eigenrays
(.ray)

plotad altimetry (.ati) BELLHOP
STRUCTURE

plotshd
plotbty
bathymetry (.bty)
Model Input @l | gp| | HOp =y Model Output pressure field
lott (.shd)
plottrc. = top reflection
coefficient (.trc)
plottir
plotbrc
bottom reflection
coefficient (.brc)
source beam pattern (.sbp) plottld
5 plotssp2D
: arrivals plotarr - ‘
5 2D SSP (.ssp) (.arr) . il

The BELLHOP Manual and User’s Guide

BELLHOP Acoustic Toolbox

In [14]: pm.plot_ssp(env)

o &
o)
] op
<
e =
Underwater acoustic propagation modeling with arlpy and Bellhop s =
The underwater acoustic propagation modeling toolbox (uwapm) in arlpy is integrated with the popular Bellhop ray tracer distributed as part of the acoustics %’15]
toolbox. In this notebook, we see how to use arlpy . uwapm to simplify the use of Bellhop for modeling. Q
2]
Prerequisites]
« Install arlpy (v1.5 or higher)
« Install the acoustics toolbox (6 July 2018 version or later) 0]
1530 1532 1534 1536 1530 1500
Getting started Soundspeea (ms)

SO e MLV DR R Looks more interesting! Let's see what the eigenrays look like, and also the arrival structure:

In [1]: import arlpy.uwapm as pm

. In [15]: rays = pm.compute eigenrays(env)
gnport arlpy.plot as plt pm.plot_rays(rays, env=env, width=900)
import numpy as np
o @
In [2]: pm.models() 0
out[2]: ['bellhop'] 5 o
<
The bellhop model should be listed in the list of models above, if everything is good. If it isn't listed, it means that be1lhop. exe is not available on the -10 4 .
PATH, or it cannot be correctly executed. Ensure that bellhop . exe from the acoustics toolbox installation is on your PATH (updated .profile or =

equivalent, if necessary, to add it in).

Depth (m)
!

From here on we assume that the bellhop model is available, and proceed...

2]
We next create an underwater 2D environment (with default settings) to model:

+ t + t ,
0 200 400 600 800 1000
Range (m)

Our Implementation

Matplotlib Frontend

BELLHOP Model (FORTRAN)

Our Implementation

BELLHOP
Model
(C++/CUDA)

OpenGL
Frontend

)

C++ Main
BELLHOP Model (FORTRAN)

Our Implementation

CPU Only GPU Only

OpenGL BELLHOP OpenGL BELLHOP
Frontend Model (C++) Frontend Model (CUDA)

C++ Main C++ Main

BELLHOP Hacking

[J README &[5 GPL-3.0 license

bellhopcxx I bellhopcuda

C++/CUDA port of BELLHOP / BELLHOP3D underwater acoustics simulator.

Impressum

Copyright (C) 2021-2023 The Regents of the University of California
Marine Physical Lab at Scripps Oceanography, c/o Jules Jaffe, jjaffe@ucsd.edu
Based on BELLHOP / BELLHOP3D, which is Copyright (C) 1983-2022 Michael B. Porter

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see

https://www.gnu.org/licenses/.
FAQs

What is C++/CUDA?

This is a single codebase which can be built as multithreaded C++ code for your CPU, or as CUDA code for your
NVIDIA GPU. You can use the CPU version (bellhopcxx) even if you don't have an NVIDIA GPU.

What platforms does this run on?

bellhopcxx is compatible with all platforms (Linux, Windows, Mac), and bellhopcuda is compatible with all
platforms which support CUDA (Linux and Windows).

hy should I use bellhopcxx / bellhopcuda instead of BELLHOP ?

Graphical Frontend

Bellhop Algorithm Speed of Sound

OpenGL

o Uses CPU or GPU
based on system

Vectors of Vertices

Shaders apply color &
transformation

Buffer swapping

ImGUI widgets

penGL.

Demo

http://www.youtube.com/watch?v=2t0jKzGrOC4

e Measure time it takes to simulate 100-1000 rays on CPU vs. GPU

e Perform a breakdown of frame rendering aspects

o Memory Management
o BELLHOP calculations

o OpenGL drawing

Results: Ray Test

of Rays 100 200 300 400 500 600 700 800 900

Computation
Speed Up

Graphics
Speed Up

Results: Ray Test

Computation Time Graphics Time
—e— CPU —e— CPU
6 —e— GPU —~o— GPU
10 -
5_
8_
- 4 =
£ £
= = 6 -
[} [
E E
F 3 -
4-
2-
2-
1-
T T T T T T T T T T 0_ T T T T T T T T T T
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

Number of rays Number of rays

Frame Breakdown Test

Bellhop Algorithm

Run program simulating 1000 rays in a
preloaded environment on CPU and GPU

Perform a breakdown of frame
rendering aspects

o Memory Management

o BELLHOP calculations

o Asset Preparation

o Buffer update/swap

Results: Frame Breakdown

Preprocessing Run Post- Vertex Draw + Misc.
processing Population

CPU time (ms) w0k 3.81 0.0004 0.0014 10.17
14.3% 22.69% | 0.0023% .0083% 2.44% | 60.56%

GPU time (ms) F&es 1.13 0.00015 0.00052 0.031 1.81
39.74% 22.91% .003% .01% .63% 36.7%

Results: Frame Breakdown

CPU Frame Breakdown

GPU Frame Breakdown

Legend Title
B Preprocess
B Run
B Postprocess
Il Vertex Population
B Swap Buffers
Il Draw + Other

Future Work

Polish and submit PR to BELLHOP
Acoustic Toolbox

Use the 3D BELLHOP model and
create corresponding OpenGL
frontend

Leave vertex data in GPU memory
when drawing

| A,

3D Generative Modeling with DeepSDF - C. Wolfe

Conclusion

e Significant speed ups in both
computational and graphical
components

e Great starting point for a real time
underwater communications
simulator

Sources

http://oalib.hlsresearch.com/Rays/HLS-2010-1.pdf
https://arlpy.readthedocs.io/en/latest/_static/bellhop.html
https://github.com/A-New-Bellhope/bellhopcuda
https://towardsdatascience.com/3d-generative-modeling-with-deepsdf-2c
d06f1ec9b3

