
Interactive Underwater Acoustic Simulator with Ray
Tracing

Christopher Kitras, Ashton Palacios
Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA

Email: {chkitras, apal6981}@byu.edu

I. BACKGROUND

Underwater communication is immensely more difficult than
terrestrial communication. In terrestrial communication, higher
frequencies of electromagnetic radiation can be used to encode
information in higher data rates. The data rate underwater is
lower because the medium dictates using sound as the carrier
frequency, in the range of kilohertz to hundreds of kilohertz.
Using sound waves in water comes with additional difficulties.
These difficulties arise from the properties of the water column
not being homogeneous. There can be different temperatures,
salinity, and amounts of particulates at varying levels in the wa-
ter column, among other factors. All of these factors change the
speed of sound at the different layers. Having differing speeds
of sound causes haves to bend and refract leading to destructive
interference. To design waveforms and algorithms around these
difficulties to communicate underwater, mathematical models
are used to simulate underwater wave propagation.

Many different mathematical models have been developed
over the past fifty years to model how sound waves move
through underwater environments. A popular one that is still
used today is the BELLHOP algorithm. The BELLHOP al-
gorithm is a beam tracing algorithm that approximates the
underwater pressure fields caused by acoustic propagation that
is defined by many variables. Many of these variables can be
manipulated by a user such as the altimetry, bathymetry, sound
profile speed, and the receiver and transmitter locations. These
parameters, and many more, are manipulated via configuration
files that are loaded by the program at run time. The configu-
ration files need to be updated by hand if any parameters want
to be changed. The manual editing of these files makes using
the BELLHOP model cumbersome and slow. Figure 1 is from
the BELLHOP Manual and User’s Guide and shows the many
features that are wrapped up in the model.

Originally, the algorithm was implemented in the popular
math modeling language FORTRAN [1] and has been given
Python bindings [2] to make it more easily integrated into
rapidly developed projects/scripts. The Python bindings has
lead to a few projects to visualize the output from the BELL-
HOP model. The already compiled model is run and Python
does the visualization. This is currently the state of the art. Files
need to be manually adjusted and run through the model before
they can be visualized. Recently, more optimized versions of
this algorithm and its behavior have been implemented in both
C++ and CUDA [3]. Our project aims at using the optimized

Fig. 1: Features of the BELLHOP model.

C++ and CUDA implementation to make an interactive GUI to
update the configurations and visualize the outputs in real-time.

II. PROJECT GOALS

The goal of the project is to create an interactive GUI
using OpenGL to run the BELLHOP continuously and simulate
underwater communication. Our research lab is starting a new
project involving underwater robotic peer-to-peer networks. To
test our developed algorithms and protocols we need a simulator
that can easily update parameters. Our semester project is the
start of this endeavor.

To stay within the scope of the semester project, we focus
on the ray and eigenray broadcast functionality and updating
the speed of sound in the water column. Implementing the
broadcast functions allows us to visually see how the waves are
propagating through our environment. This functionality allows
the optimal placement of robots in an environment with the best
communication signal strength. In addition to visually seeing
the rays, we also can the speed of sound at different levels of the
water column. Many factors of underwater environments cause
different speeds of sound at different layers. These changes
cause the acoustic waves to bounce and behave differently at
the different layers. This also can inform users in optimally
placing robots in an environment. Our final project goal was to
create an OpenGL application integrated within the C++/CUDA
implementation of the BELLHOP model. OpenGL has the
capability of running on a CPU or GPU. This allows us to

Fig. 2: Comparison of old BELLHOP visualization and our
solution

not only benchmark the BELLHOP implementation but also
our interactive GUI.

As an aside, the original goal we had was to exploit the beam-
tracing functionality of the algorithm and create an implemen-
tation that would run on the RTX cores of an NVIDIA graphics
card. This would have been done through the OptiX API [4]
which provides access to these specific cores. Upon closer
review of the OptiX library, we determined that implementation
of the BELLHOP algorithm would not be a feasible goal
without substantial knowledge of not only the OptiX API but
also a deep understanding of how the BELLHOP model deals
with the underwater physics propagating acoustic waves.

III. APPROACH

Our project is split into two portions: the BELLHOP algo-
rithm and the OpenGL GUI. The BELLHOP portion of the
project involved understanding the implementation and how to
integrate it into our project. The project has dozens of files
that are intractably intertwined. The project outlines an input
parameter struct and an output parameter struct. Through much
investigation, trial, and error, we discovered how to adjust the
run mode and speed-of-sound profile. We can effectively tell
the algorithm to switch between normal and eigenray runs. We
can also modify the speed-of-sound profile for the environment
on the fly.

Our biggest optimization from the BELLHOP computation
standpoint is that we don’t simply use a precompiled binary
with manipulated input configuration files. We are integrating
our code directly into the BELLHOP implementation. This
saves time by avoiding file I/O overhead that would be used
to update and process the input and outputs of the algorithm.
Integrating our code into the C++/CUDA project was no easy
feat. We had to deeply explore, through trial and error, how
to manipulate the parameters without losing performance or
accuracy. While injecting our code was challenging, the most
difficult integration for this portion of the project was updating
the CMake files to correctly compile and link the OpenGL
libraries. The C++/CUDA project uses complex CMake exten-
sively to compile the project, but we were able to make the
necessary adjustments to compile and link correctly. Injecting
our code instead of using a precompiled binary enables more
BELLHOP computations to be performed pushing our project
towards running in real time.

The BELLHOP implementation can be compiled for CPU
or GPU usage. It is structured in such a way that a simple
change in the top-level CMake file allows compiling for either
architecture. We liked this capability because it allows us to
benchmark the algorithm’s speed on the respective platforms.
Being able to benchmark, however, pushed us into transferring
some of the ray memory to the host computer for visualization.
Transferring the data enabled a flexible code base that was
easier to implement and compile for evaluation. In practice,
this project will fully be realized on the GPU. This will enable
us to keep the ray information on the GPU and allow OpenGL
to access the GPU device the memory directly. Although there
was a slight speed decrease because of this compromise, this
compromise allowed us to finish the semester project in a timely
fashion with decent results.

Creating the GUI in OpenGL was no small feat either. Instead
of relying on frameworks that are built on top of OpenGL like
SFML [5] or SDL [6], we rely on raw OpenGL calls with minor
input help from GLFW [7] to handle interaction and window
events. We also integrated a lightweight, widget library meant
for OpenGL called ImGUI [8] which provided the necessary
sliders, buttons, and input fields that allow users to enter in
simulation-specific parameters. Keeping the rendering logic as
close to OpenGL as possible allows us to avoid unnecessary
overhead when depicting the current simulation status. It also
allows us to further inject ourselves into the rendering pipeline
more directly for future iterations of this work. Finally, we use
an OpenGL configuration script that creates the correct set of
environmental parameters that allows OpenGL to run optimally
on our system called GLAD [9].

Relying on OpenGL calls directly comes with its drawbacks.
Since everything is as low-level to the rendering engine as
possible, we do not reference abstracted objects such as a
square, circle, line, etc. For every object, we are responsible
for the following:

1) Creating and compiling a shader that controls the trans-
formation and color of the proposed drawing.

2) Creating and populating a Vertex Array Object (VAO)
and Vertex Buffer Object (VBO) which keep track of an
object’s vertices in host and OpenGL memory.

3) Indicate how the vertices are to be connected (i.e.
GL_LINE_LOOP, GL_LINE_STRIP, and a myriad of
other options).

4) Delete all the previous items from memory.

While this may not seem like a lot to keep track of, this
overhead in programming balloons exponentially the more that
is (potentially) drawn to the screen.

Once we could reliably draw shapes to the screen at any color
and position, we were able to render the waves represented in
the BELLHOP algorithm. We then created a second viewport to
visualize the speed of sound spline that compliments every sim-
ulation. The algorithm to take a few points and render a spline
of n points was provided by an already existing solution [10].
All of the vertices for these waves and splines are provided
for by the BELLHOP algorithm which runs once every frame.

TABLE I: Ray Test

of Rays 100 200 300 400 500 600 700 800 900 1000
Computation
Speed Up 0.80 0.63 1.01 0.84 1.33 1.27 2.32 1.55 1.55 1.63

Graphics
Speed Up 3.17 2.69 4.7 3.23 6.7 4.58 8.17 5.79 5.47 5.16

Clearing the old frame’s previous objects and drawing the new
objects once per frame provides the real-time experience of
seeing the BELLHOP model react instantaneously.

The final and most annoying hurdle to cross in rendering
the drawings to the screen is rendering text. There is no native
OpenGL support for rendering text and creating a renderer by
hand from scratch seemed pretty unreasonable for the scope
of the project. So in the true spirit of all things open-source,
we use a text renderer that is the product of a Learn OpenGL
tutorial series [11]. Once this was all set up, we could render
the labels for the axes of our simulator, leaving us with a tool
as seen in Figure 3.

Fig. 3: BELLHOP OpenGL simulator screenshot.

IV. ANALYSIS AND RESULTS

To evaluate both portions of our project we used the normal
ray functionality. This allowed us to explicitly control how
many rays were being computed by the BELLHOP model and
how many rays were being drawn by our OpenGL application.
We compiled a binary to run both the BELLHOP model and
graphics solely on the CPU and another that utilized the GPU.
We performed two tests using these setups. These tests are
meant to characterize the speed profiles of running on either a
CPU or GPU and how much time is spent doing each task in
rendering a single frame.

The first test compares the run times of the computation
and graphics between CPU and GPU architectures. We selected
100-1000 rays in 100-ray increments to show this comparison.
The results are found in Fig. 4 and Table I. These results show
that there was a speed-up for both the BELLHOP computation
and our OpenGL application when utilizing the GPU. The only
scenario when the GPU did not cause a speed-up is in the first
100-400 ray tests. We attribute this to the memory overhead of
transferring memory back and forth between the host machine
and the GPU. The C++/CUDA project documentation claims
significant speedup between the C++ and CUDA implemen-
tations does not manifest until tens of thousands of rays are

Fig. 4: Performance comparison of BELLHOP execution and
OpenGL rendering between the CPU and GPU.

computed. Running with tens of thousands of rays would most
likely crash our OpenGL application and render the test useless.
We instead focused on a reasonable amount of rays that can
feasibly be drawn coherently.

The second test we ran was to check what percentage
of rendering a frame (including the BELLHOP calculations)
is affected by running on a CPU vs. a GPU and whether
or not we are using the C++ implementation or the CUDA
implementation. To keep the test relatively simple, we decided
to run the CPU test with the C++ BELLHOP code and the
GPU test with the CUDA code. This would ensure that the CPU
solution would be both calculating and rendering our code with
host hardware and that the GPU would use its hardware in the
CUDA version for both calculations and OpenGL rendering (as
verified by checking nvidia-smi). We used the same initial
environment for both of the runs and rendered 1000 normal
waves, averaging the time it took to perform the calculations
in BELLHOP and the time it took to change the vertices for
drawing, drawing on the screen, and swapping the buffers.

Fig. 5: Percentage of frame rendering cycle breakdown on CPU
and GPU.

As apparent in Figure 5, when running the CPU-only version

TABLE II: Frame Breakdown

Preprocessing Run Postprocessing Vertex Population Swap Buffers Draw + Misc.

CPU time (ms/%) 2.401
14.3%

3.81
22.69%

0.0004
0.0023%

0.0014
.0083%

0.41
2.44%

10.17
60.56%

GPU time (ms/%) 1.96
39.74%

1.13
22.91%

0.00015
.003%

0.00052
.01%

0.031
.63%

1.81
36.7%

of the test, we can see that the majority of the time taken to
render the frame is from the drawing (+ other since we also
include the time it takes to print out values to stdout) with a
small yet significant sliver coming from swapping the buffers.
The other two categories come from BELLHOP calculations
and the rest of the contributing factors are insignificant. Con-
versely, when looking at the GPU-aided code, we can see that
there is a much more even distribution of what contributes to
the render time. We see that Draw + Misc. time was reduced
significantly. Upon closer analysis from Table II, we see that the
top categories for rendering across both tests are Preprocessing,
Run, and Draw + Misc. However, in the CPU test, over half of
the frame render time was dedicated to drawing whereas the
second test it is under the Preprocessing time! Furthermore (and
as expected) the total render time has decreased significantly
from CPU time to GPU.

V. CONCLUSION AND FUTURE WORK

For this project, we created an OpenGL application that
directly modifies and visualizes the Bellhop model parameters
and outputs. We directly inject our code into the Bellhop
algorithm and do not simply modify configuration files and
call a precompiled binary. By doing so we can simulate and
visualize hundreds to thousands of acoustic waves in real time.
We measured the speed up of running both the model and GUI
application on a GPU vs a CPU. We found that using a GPU
is computationally advantageous in most cases, especially for
the graphics. This project is the first step of many of creating
a working underwater acoustic communications simulator for
a research project in our lab. We plan on modifying the
C++/CUDA Bellhop project further to keep the ray memory
solely in the GPU and not transfer any data back to the CPU.
We also plan on supporting more of the features the Bellhop
model can perform. This project has pushed our understanding
of both modern C++ and OpenGL which gives a great footing
to continue this and future projects.

REFERENCES

[1] May 2023. [Online]. Available:
http://oalib.hlsresearch.com/AcousticsToolbox/

[2] A. NUS, “arlpy,” 2023. [Online]. Available: https://github.com/org-
arl/arlpy

[3] M. P. L. at Scripps Oceanography, “bellhopcxx / bellhopcuda,”
https://github.com/A-New-Bellhope/bellhopcuda, 2013.

[4] [Online]. Available: https://developer.nvidia.com/rtx/ray-tracing/optix
[5] L. Gomila. [Online]. Available: https://www.sfml-dev.org/
[6] [Online]. Available: https://www.libsdl.org/
[7] [Online]. Available: https://www.glfw.org/
[8] O. Cornut. [Online]. Available: https://github.com/ocornut/imgui
[9] D. Herberth. [Online]. Available: https://glad.dav1d.de/

[10] T. Kluge. [Online]. Available: https://github.com/ttk592/spline/tree/master
[11] J. de Vries. [Online]. Available:

https://learnopengl.com/code viewer gh.php?code=includes/learnopengl/shader.h

