
Location Verification of Crowd-Sourced Sensors
Christopher Kitras∗, Carter Pollan∗, Kyle Myers∗, Camille Wirthlin Tischner†, Philip Lundrigan∗

∗Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
†Department of Electrical and Computer Engineering, Utah State University, Logan, UT, USA

Email: {chkitras, cjp82, kyle2004, lundrigan}@byu.edu and camille.wirthlin@gmail.com

Abstract—Community-driven sensor networks have been in-
strumental in providing easy access to affordable, large-scale
measurement recording, facilitated by the accessibility of inex-
pensive sensor hardware. The simplicity of this hardware makes
it challenging to retrieve trustworthy location data without added
hardware such as GPS. We introduce the LaMDA framework, a
software-based solution run solely in a web browser to determine
the location of a device with the aid of a registering device.
We monitor the device for any location changes by analyzing
its traceroute data from a central server. Our solution allows
minimal firmware changes to be made to fleets of devices without
recall or changes to hardware.

Index Terms—crowdsourcing, citizen science, sensor networks,
air quality, IoT

I. INTRODUCTION

The recent boom of community-driven sensor networks is
a fundamental step in the progress of affordable, distributed
health/environmental monitoring. This is especially helpful for
those engaged in citizen science initiatives, where volunteers
from the community deploy their devices to provide measure-
ments to a central service. A popular field that is flourishing
with the help of citizen science engagement is the recording of
environmental data, specifically air quality (AQ) data where
tens of thousands of nodes are deployed. Like many other
environmental monitoring research, air quality research ben-
efits from large quantities of spatially diverse sensor readings.
Crowd-sourced sensing device deployments lend themselves
well to this type of research.

PurpleAir [1] is one such popular network of community-
driven low-cost internet-enabled air quality sensors. These sen-
sors are deployed by individuals and the data is uploaded to a
central repository and map where people can view the data. The
sensors are not strictly calibrated, maintained, or quality assured
like the government-run stations. However, studies have shown
that their accuracy is similar to government AQ stations with
a correction factor added to the data [2]. These community-
driven AQ device networks have reached enough critical mass
that government websites now display the low-cost devices’
readings alongside government stations [3]. Recently, Google
integrated the data stream from community-driven AQ devices
into Google Maps (Figure 1). It is evident that the integration
of this community-collected data into popular, trusted platforms
shows the increased trust in citizen science platforms.

However, there is a hidden risk associated with using this
data. Since the sensors are low-cost, there is no GPS module
provided to determine their location. If there are no positioning
capabilities on the devices, the citizen scientists become the

Fig. 1: A Google search for air quality shows data from both
a government source and PurpleAir sensors

source of location. With this lack of location verification,
anyone from absent-minded, well-meaning users to mali-
cious actors intent on ruining the integrity of the system’s
data could falsely place a sensing device anywhere on the
map. For example, a motivated adversary could store these
devices in a clean location while registering them to regions
with poor AQ, thus artificially improving the AQ in the area
from the perception of an AQ map.

Many people rely on this public data, especially those
with elevated sensitivities to pollen or smoke. Though the
government and Google show the AQ readings to help people
make decisions on health, no one has verified that the device
is actually in the location it is registered to. Now that these
devices’ data are displayed on popular and trusted websites, this
problem needs to be addressed. People are making important
health decisions on data that can not be trusted. It is
irresponsible for services to display the information without
any location verification. We need a way to provide location
verification, thus improving the trust of the devices without a
costly solution. The central question of this research becomes,
how can we prove that a sensing device is installed in its
registered location without extra hardware? While we focus
on air quality, this problem is generalizable to all community-
driven sensor deployments.

We aimed to create a solution that (1) verifies a device’s
location without extra hardware, (2) detects any changes in the
device’s location, and (3) scales to be deployed on any system
without requiring a platform-specific application. These design
goals prevent the need for recalling and retrofitting devices
with localization hardware, prevent device relocation after
verification, and ensure accessibility to users with unsupported
smartphone models.

To meet these goals, we create the Location and Movement
Detection on the Application layer (LaMDA) framework that
solves the problem of localizing a device without any additional
hardware. We leverage the huge popularity of the smartphone
by using its geolocating services to act as the proxy location
of a device. We ensure that the smartphone and device are
geographically close together by analyzing network character-
istics. We design a system that monitors the device’s location
to ensure it has not moved after its location is established. To
make our system easily adoptable, we design it to not require
any special system privileges or network features. This is no
small task because this requires our framework to comply with
strict security norms required by a web browser to provide
secure communication between multiple hosts. The result is a
framework that does not require a platform-specific application
but instead can be run from a standard web browser.

We open source our code so that others can build on it
and integrate it into their systems. The code is available on
GitHub [4]. Our hope is that maintainers of these crowd-
sourced sensing networks will adopt this protocol so that a
device’s location may be established, thus allowing us to trust
its data. Until then, the data reported by these networks can not
be trusted.

II. RELATED WORK

This paper focuses on determining the geolocation of a
device and, once it is established, determine if it has moved or
not. The most obvious solution to this problem is to use GPS.
GPS does not fit within our design criteria because it requires
extra hardware to work, increasing the cost and complexity
and invalidating already deployed devices. Also, GPS does not
work in all situations, especially in urban environments and
indoors, where there is no clear visibility to the sky [5]. Another
possible solution to provide geolocation by triangulating with
cell towers. While this is a possible solution, our framework
focuses on devices deployed with a WiFi connection since the
most popular community-driven sensors are WiFi.

Databases like IP2Location’s Geolocate [6] geolocate people
based on their IP address. However, research has shown that
these systems have are not very good when dealing with
distances less than 6 miles (10 km). They also are dependent on
your Internet Service Provider (ISP) and population density [7]
[8]. For our geolocation approach, we utilize the services
provided by smartphone manufacturers that use a combination
of cell towers, WiFi, and GPS [9]. Our innovation is not in
the methodology of geolocation, but the use of a second smart
device as a proxy for the location of the sensing device.

III. TYPICAL SENSING DEVICE REGISTRATION

To understand the contributions of this paper, we provide
a walk-through of a typical low-cost AQ device registration
process [10] as illustrated in Figure 2a, which is also typical
of many IoT devices. These devices connect to a central
server over WiFi and require network credentials to connect
to an available access point. The devices go into AP mode to
enable a user to connect to the device and provide network

credentials through a self-hosted web page. Once the device
receives the WiFi credentials, it switches to client mode and
connects to the home’s WiFi AP. The user is then forwarded to
a registration page containing a questionnaire where they enter
specifics about the device deployment, including its location.
Current registration processes do not require any confirmation
of the location, making them unreliable as the user base grows.
This paper presents a design that is easily integrated into
existing sensor frameworks and eliminates the need for location
verification by the user.

IV. SYSTEM DESIGN AND ARCHITECTURE

Our system aims to determine device location without user
input to eliminate human error and location falsification by
bad actors. After location determination, we monitor for any
changes, requiring device re-registration to re-establish location
trust and verify data uploads. The system consists of two com-
ponents: device registration and change of location detection,
detailed in Section IV-B and Section IV-C. We first outline our
expected adversary and their capabilities.

A. Adversary Model

In the design of our system, we assume the following
adversary: a malicious actor who has complete control over
their local network (e.g., a home network) and can manipulate
where traffic and data flow. They have the ability to sniff
packets and manipulate them within their network. However,
they do not have the ability to control the flow of data outside
of their network, change the firmware of the sensor device,
or change the software running on the registering device (e.g.,
smartphone) or server. Privacy is not a concern of our system
since we are assuming the device readings are uploaded to a
publicly available community map.

The main scenario we consider is an adversary who buys a
sensor device and wants to trick our system into thinking their
device is in a different place than where it actually is located.
This scenario covers malicious behavior, but it also covers a
person who accidentally sets the location incorrectly or moves
the device to a new location and forgets to update its location.
An adversary can perform man-in-the-middle (MITM) attacks
on the packets that are sent and received within their network
as illustrated in Figure 2c. They can also set up relays between
different networks to make it look like a device originates from
another network. In Section IV-B1, we present specific ways
an adversary might try to achieve this goal and how our system
protects against such attacks.

Spoofing GPS is outside of the scope of the adversary model
of this work. While it is a viable attack vector for a malicious
actor, research has been done on this topic [11] [12], along
with commercial software products [13], and supplementary
databases to ensure reported GPS data is accurate, such as
GeoIP services [6]. Our solution, by design, focuses on using
networking from user space to verify the location of the senor
and if it has moved. Our solution could be integrated with GPS
spoofing technologies, but that is not the focus of this paper.

(a) Current Registration Process (b) New Registration Process (c) Adversary Configuration

Fig. 2: Different registration schemes for associating air quality devices with a location-based service

Fig. 3: The registration flow between the devices

B. Device Registration

The entities that participate in the registration of a device are:
(1) Registration Server where the registration service is hosted
and where the database of active users is held; (2) Registration
Device (RD) that has location services to prove the location of
the sensor. Generally, this will be a smartphone, but any device
with location services, such as a web browser on a laptop,
can also be used. (3) WiFi Device which is the device to be
registered.

By design, our device registration process does not require
any additional hardware and uses the same entities and gen-
eral flow as the current state of practice for sensor device
registration. Figure 2b outlines how the different components
communicate to verify the sensor device’s location. The novelty

of our system is providing additional functionality without
changing the devices themselves.

The first step is to prove that the RD is close to the WiFi
device. We utilize the RD’s location services (e.g., a smart-
phone’s GPS) to get an approximate location of the device.
Once the location has been established, we use the central
server to monitor that the location has not changed. If the server
detects the location has changed, the user is required to redo
the registration process. Throughout this process, we design our
protocol in such a way that an adversary can not manipulate or
read any of the data.

In order to decide whether we accept that the RD and the
device are in the same location, we need a common factor
that is specific to both of those devices all done within a web
browser. We find that the best way to determine the device’s
locality with respect to the RD was by measuring the latency of
a packet sent to the central registering server from both devices.
A benefit of this approach is it adapts to changes in network
conditions because both devices are affected equally if they are
on the same network. A device on a separate network would
not see those same changes.

To start the process, the user connects to the central server
allows location sharing. The server initiates a secure WebSocket
(WSS) session, sending a sequence of “pings” with a payload
of a nonce R to the client. The client responds with ”pong”
and the payload with R+ 1, and the server records the round-
trip time (RTT). The server selects the minimum RTT value
as the latency between the server and RD (LRD), stored for
future use. The nonce is required to avoid a redirect attack (see
Section IV-B1). This process is illustrated in Figure 3, steps
1–5.

After the latency between the server and the RD has been
measured, the server responds with a session token (TREG).
This token allows the server to distinguish between different
device registration requests. The server then prompts the RD to
navigate to a page that the sensor device hosts on its own HTTP
server, requiring the RD to switch to the WiFi device’s AP.
The user is then clicks on a link redirecting them to the WiFi
device’s credential input webpage. During this page redirect,
TREG is transferred from the RD to the device. This stage
of registration was heavily affected in design by RFC1918 [14]
which prohibits the flow of requests from public address spaces
to more private ones. Adherence to this rule allows us to

maintain our framework solely in a browser, providing a wider
range of compatibility across different devices. After submitting
the WiFi network credentials, the WiFi device sends a request
to the server with a version of TREG that is encrypted with
a symmetric key (KDEV SRV) along with DEV ID. This
symmetric key must be determined and burned into flash
memory beforehand by the manufacturer of the device. It is
the entity that attests to the unique identity of the device during
registration. This process is illustrated in Figure 3 in steps 6–9.

The server receives KDEV SRV (TREG) and decrypts it. If
the TREG value matches what the server sent to the RD,
the server responds with a confirmation. If TREG does not
match due to an adversary modifying the data or generating
a fake request, the server invalidates the registration token
and the registration process must start from the beginning. If
successful, the same latency measurement process as before
happens between the server and the sensor device, yielding
LDEV . First, the server compares the public IP address of
the RD and the public IP address of the sensor to ensure that
they are from the same network. We assume that the LAN of
the device uses a NAT and that all traffic coming from the
home network has the same external IP address. If the public
IP address matches both the RD and the WiFi device, we can
reasonably assume that they are part of the same LAN, and
therefore could be in the same location. If not, we assume that
they are on different LANs and invalidate the registration. This
process is illustrated in Figure 3 in steps 10–13.

Next, to ensure the WiFi device and RD are geographically
on the same network, the server compares LDEV and LRD to
see if they are similar to each other. If LDEV and LRD are
not within a certain threshold, this could indicate that there
is extra hardware with a delay of LBR between one of the
devices and the server, yielding a value of LDEV + LBR or
LRD+LBR which is the added latency of a bridge (Figure 2c).
We experimentally derive the threshold in Section VI-A. This
process is illustrated in Figure 3, steps 13 and 14. If the public
IP addresses, latency, and encrypted randomized sequence
match, we can reasonably assume they are in the same location.

1) Design Security: We design our protocol to protect
against the interception of data by a man-in-the-middle (MITM)
attack between the RD and server, server and WiFi device,
or RD and WiFi device is an additional concern. We use
the Transport Layer Security (TLS) protocol to encrypt and
authenticate all transactions going outside the LAN to the
server. However, we do not use TLS for data sent between
the RD and device due to certificate management overhead.
Nonetheless, an attacker who removes or alters the payload
(TREG) between the RD and device would invalidate the
registration session.

An adversary may try to deceive our system by falsifying
the public IP address of the WiFi device, making it appear as
if the device and RD are on the same network. For instance,
the adversary could send traffic from a different network but
with a spoofed source IP address that matches the same IP
address the RD device is on. To mitigate this threat, our ping

messages are encrypted with KDEV SRV and contain a random
number. The device must first decrypt the message, increment
the random number by one, encrypt it, and send it back to the
server in response to the ping message. The server verifies that
the encrypted number has been incremented by one before it
calculates the round trip time. This ensures that only the WiFi
device is capable of responding to pings, preventing spoofing
attempts.

C. Change of Location Detection

With the location verified in the registration process, we are
now confident that our WiFi device is indeed at the location of
registration. However, that guarantee means little if someone
moves the device after registration. The question becomes how
do we ensure the device has stayed in the same location? To
answer this question, we develop an algorithm for detecting
changes in the location of a device, which we call Change of
Location Detection (CoLD). The novelty of this algorithm is
that it requires neither extra hardware nor assistance from the
device itself. We are able to detect changes in location purely
from the perspective of the server. Detecting a location change
is different from determining the geolocation of a device. From
the perspective of the algorithm, the only thing that matters is
whether the device has moved or not. If we detect the device
has moved, then we rerun the registration process to determine
its new location.

We utilize two tools, gap detection and traceroute, to
detect the change of location of a WiFi device. Devices,
especially environmental sensors, are programmed to upload
data at specific intervals. When a device is moved, it will
typically be powered off and disconnected from the Internet,
creating a gap in data. We develop an algorithm that detects
gaps in sensor data and then checks for change in the position
of the device. To perform this check, we use traceroute
which tracks the hops a packet takes to construct a path through
the Internet starting from the server and ending at the device.
When the system detects a gap, we can compare the path from
before the gap to after the gap. If the path has stayed the same
the device has not moved.

Using traceroute reliably is a challenging problem be-
cause the path a packet can take through the Internet can be
dynamic and take multiple paths [15]. The CoLD algorithm
cannot simply compare a single route from before a gap to a
single route after the gap because a route can change even when
the location of the device has not changed. We deal with this
by comparing many routes collected before the gap to multiple
routes after the gap. We describe the details of the algorithm
in Section V-B.

1) Traceroute Logging: The traceroute logger runs
traceroute, collects path data, and sends it to the database
for all devices in the fleet. It measures the path between the
logger and the WiFi device’s router, not the device itself. If the
external IP address changes, the path is checked for significant
differences to determine if the device has moved.

2) Gap Detection: When data from a sensor device has no
long gaps and the public IP address remains unchanged, we can

Fig. 4: CoLD algorithm modules and connections

assume the device is in the same location. However, gaps in
data or changes in public IP address indicate a system change,
which could be due to a device relocation or other reasons such
as power or internet outages. Gap detection module is used to
detect gaps in the data and report them. The module compares
the most recent timestamp with the current time and if the
difference between the two is greater than TGAP (the typical
time between data readings for a device), a gap is detected.
We set TGAP to be three times the amount of time between
expected uploads from the device, and when a gap is detected,
the movement detection module is notified with information
about the start and end of the gap.

3) Movement Detection: The movement detection module
is responsible for detecting when a WiFi device needs to be
re-registered with the CoLD algorithm. When a data gap is
identified, the module checks if the ISP has changed based
on the source IP address of the data packet. If the ISP has
changed, it may indicate a device has moved and needs to be re-
registered. Next, the module compares the traceroute data
before and after the gap to determine if there has been a change
in the device’s location. If the traceroute data is similar
and no movement is detected, nothing happens. However, if
the traceroute data is dissimilar, the module quarantines
incoming data from that device and alerts the user to re-register
the device. More details on how we determine similarity in the
traceroute data are explained in Section V-B.

V. IMPLEMENTATION

We take care great care in choosing the technologies and
hardware that are included in the implementation and testing
of our framework to ensure that our setup reflected actual
conditions that could be found in real world deployments.

A. Device Registration

The proximity and location verification system consists of a
WiFi device, a RD, and a registration server. The Raspberry
Pi 4B is chosen for the WiFi device, and the Google Pixel 6A
is chosen for the RD. A virtual private server is used for the
registration server, running on Ubuntu 20.04.5 and using Nginx
as the web server and Python Flask with SocketIO library to
handle the registration process. The system relies solely upon

HTTPS requests and WebSockets for communication, which
makes it portable and easily accessible by any RD with internet
access. The WiFi device’s firmware also communicates over
HTTPS requests and WebSockets. The design is not tied to
HTTPS or WebSockets and could easily support other protocols
like MQTT or CoAP depending on the device’s needs.

B. Change of Location Detection

The CoLD system consists of three components that work
together to detect if a WiFi device has changed location. We
outline the implementation details of each of the components.

1) Traceroute Logger: We write a Python script that uses
traceroute to determine the route between the server and
the sensor device. We send traceroute to all devices
every 10 minutes and record the responses. We ignore invalid
responses from routers or if the amount of hops was too high.
The traceroute logger records the results along with the
timestamp in the central database.

2) Gap Detect: A separate Python script monitors the
database looking for gaps in data. The length of time that
constitutes a gap (TGAP) depends on the time interval between
data uploads, as programmed into the device by the device
developer. We set TGAP to be three times the interval of data
transmission. When a gap is detected, the start and end date
of the gap is collected and this information is sent to the final
component of our system.

3) Movement Detection: The movement detection subsys-
tem is a third Python application that gets activated when a gap
is detected by the gap detection module. It starts by pulling the
traceroute data from the database before and after the gap.
It pulls a week’s worth of traceroute data before the gap
to get a historical baseline of how the traces should look. We
call this our trusted data. Next, we compare our trusted data
with the data after the gap, which we call our questionable data.
The movement detection module scores the questionable data
against the trusted data. If the score is greater than 90%, then
we consider the questionable data to be the same as the trusted
data. The threshold can be adjusted depending on the tolerance
to false positives/negatives. We opt to have less false negatives
and more false positives. We rather have a device need to be
re-registered than miss someone moving a device.

VI. EVALUATION

Our system consists of two major components which we
evaluate in the sections below.

A. WiFi Device and RD Proximity Verification

The device registration subsystem in our framework ensures
that the RD and WiFi device are in the same location. This is
accomplished by measuring the LRD and LDEV and making
sure those values are within a certain tolerance LTOL of one
another. This premise only functions if |LRD − LDEV | ≤
LTOL ≤ LBR. To establish a good value for LTOL, we conduct
an experiment that compares the latency between the RD and
the server (LRD) and the device and the server (LDEV) while
the RD and device are on the same network.

Fig. 5: The measured latency between a WiFi sensor, the
registering device, and the registering device using a bridge

To determine the best value for LTOL, we create a website
with a JavaScript application that sends and receives a series
of ten requests to and from the server. We take the minimum
of the recorded latency values and use that as the general value
to represent the time it took to communicate with the server
for that device. We run this test on the Google Pixel 6A, which
acts as our registering device, for an hour and a half.

Similarly, for our WiFi device, we write a Python script to
send ten requests to the server that runs on a Raspberry Pi. The
Raspberry Pi acts as our device. The series of ten requests and
their responses were executed and latency values were recorded
and the minimum is selected as the value that represents the
time it took to talk to the server. The latency values are then
compared to see if they lie within a reasonable tolerance of
each other.

In a perfect system, the latency between the smartphone (RD)
and Raspberry Pi (WiFi device) should be the same (|LRD −
LDEV | = 0) since they come from the same network and go to
the same server. However, due to inconsistencies in the network,
these values are generally not the same. We use a tolerance,
LTOL, to allow for some difference between measured values.
The results of our experiments, Figure 5, show that the latency
between the RD and device is almost the same. The difference
in minimum latency between the two devices is approximately
15 ms.

We test our method of comparing latency values against
traffic tunneling using network bridging, a common method
of spoofing network location that allows an RD to provide
false geolocation information by being in a different location
from the device. An adversary can set up a network bridge
between two networks that are geographically far apart, and
there are many ways to set up this type of network topology,
such as using port forwarding, a VPN, or a proxy. We evaluate
this potential attack vector using a proxy service called ngrok,
which forwards network traffic to a server in the cloud and
then sends it to a desired location. The results show (Figure 5)
that the latency between the server and the device when going
through a bridge is much higher, around 110 ms, which is
expected since any bridging method adds extra latency to
the response time. Our framework detects this added latency,
making it sensitive to spoofing.

Our method detects any bridging method by taking advantage
of the added propagation delay when redirecting traffic to an-

other network. It can detect the bridged network only if it adds
a noticeable latency to the response time. If the bridged network
is physically close to the original network, the propagation
delay is negligible, and our algorithm works as expected. We
use a threshold of 15 ms (LTOL) to determine if the difference
between the RD and device’s latency is significant enough to
indicate they are not on the same network. If the difference
is more than the threshold, registration cannot be completed,
and the user must try again. We take the minimum value of 10
measurements to prevent spurious latency from falsely detecting
that the devices are on different networks. Out of 4238 attempts,
only three failed, yielding a 99.93% success rate (as seen in
Figure 5).

B. Change of Location Detection

We evaluate the change of location algorithm by measuring
traceroute data from a central server to 15 device locations
for 20 weeks. At each location, we collect traceroute
data every 10 minutes. To test the effectiveness of the CoLD
algorithm, we test nodes that exist in three common geographic
configurations: rural, inter-city, and intra-city. In the rural set we
measure the traceroute at four geographic points roughly
40 miles (64 km) apart from each other. In the second set, inter-
city, we measure the traceroute at five geographic points
that are roughly 8 miles (13 km) from each other. In the last
set, intra-city, we measure the traceroute at six locations
that are a couple of city blocks apart. The device placements
are shown in Figure 6.

To evaluate our the CoLD algorithm’s accuracy, we artifi-
cially trigger a gap event and provide data from one node at
a targeted location then data from a different node and see
if the algorithm can detect the “movement” from a difference
between the sets of data. Incrementally closing the distance
between nodes in the different geographical data sets allows
us to determine the limitations of the algorithm. The results
for each of these tests are shown in Table I. In each table, the
rows represent the nodes used as trusted data and the columns
represent the nodes used as questionable data. In the cells of
the table is the average percentage of questionable data over the
20 weeks. The results of testing a location against itself (the
diagonal of the table) determines how well our algorithm can
detect true positives. A location compared to another location
that is not itself (non-diagonal) tests the false positive rate.
We describe the results of each table in more detail in the
subsections below. In the results, some of the percentages
are above zero when emulating a sensor movement. These
percentages do not come close to the established threshold of
90% so none of the sensors would be miscategorized.

1) Rural Area Test: This test evaluates devices that are
around 40 miles (64 km). Excluding the diagonal where the
locations check against themselves, we can see that most of the
tests are close to 0%. Nodes N and O did score non-zero, and
this is attributed to them being on the same ISP. This evaluation
shows that we are able to accurately determine when a device
has moved a large geographic distance.

TABLE I
COLD ALGORITHM ACCURACY BETWEEN NODES FOR DIFFERENT GEOGRAPHIC DISTANCES

L M N O
L 99.1 0 0 0
M 0 99.9 0 0
N 0 0 99.9 23.9
O 0 0 1.8 98.0

(a) Rural Area

A B C D E
A 99.9 0 0 0 14.6
B 0 96.39 0 0 0
C 0 0 99.7 0 0
D 0 0 0 98.0 0
E 11.3 0 0 0 99.8

(b) Inter-City

F G H I J K
F 99.9 0 66.6 0 0 66.6
G 0 96.3 0 0 0 0
H 66.6 0 99.9 0 0 66.6
I 0 0 0 94.9 0 0
J 0 0 0 0 99.9 0
K 66.6 0 66.6 0 0 99.9

(c) Intra-City

Fig. 6: Device test location maps: rural (left), inter-city
(center), and intra-city (right)

2) Inter-City Test: In this test the nodes are about 8 miles
(13 km) apart. This location emulates the movement of a device
from one city to another in a metropolitan region. This test
is important because environmental sensors, like air quality
devices, can vary dramatically from city to city. It is imperative
that we are able to accurately detect when a movement of this
scale has occurred. The results for this experiment are shown
in Table I. We can see that the algorithm performed incredibly
well when comparing a node to a node that is not itself (not
the diagonal). Nodes A and E did score non-zero, and this is
attributed to them being on the same ISP.

3) Intra-City Test: Up to this point, our algorithm has been
able to differentiate between movement regions and between
cities. The final test is to see if the CoLD algorithm can detect
movements within part of a city. This establishes a limit to the
granularity that can be expected within the borders of a city. The
results show (Table I) that the accuracy for some nodes is very
good, but for other nodes is not great. This is to be expected
since we are using traceroute and it is not sensitive enough
to notice small physical movements in a city.

VII. CONCLUSION

We presented a framework that allows a user to register the
location of a WiFi device and determine whether it has moved
from its original location without the aid of any additional hard-

ware. The change of location detection process can successfully
distinguish when a device has changed location between cities.
We showed this by testing our algorithm’s ability to recognize
a device’s own path data compared to those in its own city,
neighboring cities, and distant cities. The experimental results
and lessons learned indicate that it is possible to register and
track a device’s location without the need for extra hardware
accurate to the radius of a city, which for applications in
citizen science is more than sufficient. Our system provides
the necessary ingredient for automatic verification of location
for citizen science devices.

REFERENCES

[1] PurpleAir Inc., “Purpleair: Real-time air quality monitoring,” 2022.
[Online]. Available: https://www2.purpleair.com/

[2] “Field evaluation purple air (pa-ii) pm sensor - south coast air quality ...”
2017. [Online]. Available: http://www.aqmd.gov/docs/default-source/aq-
spec/field-evaluations/purple-air-pa-ii—field-evaluation.pdf?sfvrsn=11

[3] “Using airnow during wildfires,” 2020. [Online]. Available:
https://www.airnow.gov/fires/using-airnow-during-wildfires/

[4] C. Kitras, C. Pollan, K. Myers, C. Wirthlin, and P. Lundrigan, “LaMDA,”
2023. [Online]. Available: https://github.com/NET-BYU/LaMDA

[5] D. Maier and A. Kleiner, “Improved gps sensor model for mobile robots
in urban terrain,” in 2010 IEEE International Conference on Robotics
and Automation, 2010, pp. 4385–4390.

[6] IP2Location, “Geolocate your user’s location,” 2022. [Online]. Available:
https://www.ip2location.io

[7] P. Callejo, M. Gramaglia, R. Cuevas, and A. Cuevas, “A deep dive into the
accuracy of ip geolocation databases and its impact on online advertising,”
IEEE Transactions on Mobile Computing, pp. 1–1, 2022.

[8] I. Poese, S. Uhlig, M. A. Kaafar, B. Donnet, and B. Gueye, “IP geoloca-
tion databases: unreliable?” ACM SIGCOMM Computer Communication
Review, vol. 41, no. 2, p. 4, 2011.

[9] Google, “Geolocation api,” 2022. [Online]. Available:
https://developers.google.com/maps/documentation/geolocation/overview

[10] PurpleAir Inc., “Register your purpleair device,” 2022. [Online].
Available: https://www.purpleair.com/register

[11] D.-K. Lee, D. Miralles, D. Akos, A. Konovaltsev, L. Kurz, S. Lo, and
F. Nedelkov, “Detection of gnss spoofing using nmea messages,” in 2020
European Navigation Conference (ENC), 2020, pp. 1–10.

[12] D. Miralles, N. Levigne, D. M. Akos, J. Blanch, and S. Lo, “Android raw
gnss measurements as the new anti-spoofing and anti-jamming solution,”
in Proceedings of the 31st International Technical Meeting of the Satellite
Division of The Institute of Navigation (ION GNSS+ 2018), 2018, pp.
334–344.

[13] “Mobile games protection,” Feb 2023. [Online]. Available:
https://irdeto.com/denuvo/mobile-games-protection/

[14] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. d. Groot, and E. Lear,
“Address allocation for private internets,” Feb 1996. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc1918

[15] F. Viger, B. Augustin, X. Cuvellier, C. Magnien, M. Latapy,
T. Friedman, and R. Teixeira, “Detection, understanding, and
prevention of traceroute measurement artifacts,” Computer Networks,
vol. 52, no. 5, pp. 998–1018, 2008. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128607003428

