

WiLiE: Wireless Lidar Explorer

Christopher Kitras & Ashton Palacios

Overview

- Introduction
- Related Work
- Methodology
- Implementation/Experimentation
- Results
- Conclusion
- Future Work

Introduction

- IT departments spend countless hours troubleshooting WiFi issues
- Our project makes use of commodity hardware to effectively make heat maps of any given environment with accuracy
- Success of this project displaces the need to maintain expensive licenses and hardware for occasional use

Related Work

- Ekahau Sidekick and like products
 - Strategic, static points
 - Vectors of measurement
 - AR assisted mobile measurements
- Drawbacks
 - Manually take measurements
 - Person has to be present for the process

Related Work (cont.)

- 3D interference mapping for IOT scenarios
 - Installed in the room it's measuring
 - Scanning in X, Y, and Z axes
 - Location specific
- Drawbacks
 - Unwieldy, not portable
 - Does not scale well, location specific

Methodology

- Low cost solution with the capability to take consistent and equidistant measurements with little human intervention
- Uses ROS2, an open platform, for helping different components of a robotic system to communicate effectively
- Relies on commodity hardware as opposed to expensive spectrum analyzers which can be too overpowered or expensive to license for certain routine tasks

Methodology (cont.)

- 2 Raspberry Pi 4B
 - Uses ROS2 which facilitates communication between processes
 - Motor control and LiDAR done on one
 - RSSI scanning and throughput measurement done on the other
- Teensy 4.1
 - Controls the wheel odometry
- LiDAR Unit
 - Used to make a real-time map of the current environment

- PS5 Controller
 - Moves WiLiE

Implementation/Experimentation

- Select area to map
 - NetLab
 - Fourth floor of EB
- Start and record data on WiLiE
- Post process data
- Collect Ekahau data
- Compare data

Results

External Antenna RSSI

Min: -59dB Max: -17dB

Onboard Antenna RSSI

Min:-74dB Max:-30dB

Conclusion

- Hard for smaller IT departments/individuals to buy and maintain expensive hardware
 - Automatic map creation
 - Multiple metrics
 - Opensource
- Solution does not have to fill an entire room

Future Work

- Redesign chassis/electronics
 - Ekahau emulation? SDR?
- Autonomous navigation
- 3-dimensional measurement
- Robot localization projects

Questions?