

Location Verification of Crowd-Sourced Sensors

<u>Christopher Kitras</u>^{*}, Carter Pollan^{*}, Kyle Myers^{*}, Camille Wirthlin Tischner[†], Philip Lundrigan^{*}

*Brigham Young University †Utah State University

Outline

- Background Motivation
- Current State of the Device Registration
- New Device Registration Process
- Proximity Validation Tests
- Change of Location Detection (CoLD)

BY

- Change of Location Tests
- Conclusion

Outline

- Background Motivation
- Current State of the Device Registration
- New Device Registration Process
- Proximity Validation Tests
- Change of Location Detection (CoLD)

BY

- Change of Location Tests
- Conclusion

2022 © The New York Times

2023 © Anadolu Agency

I INCOMENT

2023 © The New York Times

Why Air Quality?

- Climate change has exacerbated air quality crises
- PM2.5 is sediment of a diameter of $\leq 2.5 \mu m$
- PM2.5 enters directly into the bloodstream due to its small size.
- Growing focus on monitoring PM2.5 to track impact

Government Sensor Density

- Air quality monitoring is regulated in the United States[3]
- Mandated air quality stations deployed and monitored by government
- Must be calibrated on a frequent basis by trained personnel
- Very expensive to deploy and maintain (i.e. \$10,000+)[1]

Citizen Science Sensor Density

- Citizen Science (i.e. Crowd Sourced sensors) are sold by companies and deployed by enthusiasts/users
- Sensors are calibrated in firmware by the company (i.e. baked in correction factor)
- Low cost: ~\$230/unit[2]
- This leads to greater sensor density

Sensor Data in the Wild

- Citizen science data is becoming more trusted
- A simple Google search shows air quality from local sources

Sensor Data in the Wild

- AirNow also shows citizen science-based PM2.5 readings
- Citizen science data is everywhere!

BY

Problem

Problem

- With this lack of location verification, anyone from **absent-minded**, **well-meaning users to malicious actors** intent on ruining the integrity of the system's data could falsely **place a sensing device anywhere on the map**.
- People are making **important health decisions** on data that cannot be trusted
- How can we prove that a sensing **device is installed in its registered location without extra hardware?**

Related Work

Some previous efforts to pinpoint location of a device:

- 1. GPS: requires extra hardware, finicky outside of certain situations, i.e building cover, etc.
- 2. WiGle: WiFi fingerprinting database. Not as useful in rural locations. Not great for real-time verification
- 3. IP Geolocation databases Geolocate and GeoIP2: not very granular, dependant on ISP conformity and population density

Our Solution

- We aimed to create a solution that:
 - verifies a device's location without extra hardware
 - **detects any changes** in the device's location
 - scales to be deployed on any system without requiring a platform-specific application
- These design goals **prevent** the need for **recalling and retrofitting devices** with localization hardware, prevent device relocation after verification, and ensure accessibility to users with unsupported smartphone models.

Solution

We assume that a viable solution will ensure:

- 1. **Proximity of a registering device** with trusted geolocation services to a WiFi device
- 2. **Detect any change of location** of the WiFi device after a verified registration

Outline

- Background Motivation
- Current State of the Device Registration

BY

- New Device Registration Process
- Proximity Validation Tests
- Change of Location Detection (CoLD)
- Change of Location Tests
- Conclusion

Registration Model

Registration Model

- WiFi Device (sensor) establishes access point
- Registering Device (phone) connects to WiFi Device and provides network credentials
- Location registration is done via user input or device installer
- There usually little to no verification of this process

Outline

- Background Motivation
- Current State of the Device Registration
- New Device Registration Process
- Proximity Validation Tests
- Change of Location Detection (CoLD)

BY

- Change of Location Tests
- Conclusion

New Registration Model

- Use WebSockets to measure the latencies between phone and registering server (L_{RD}) and the sensor and registering server (L_{DEV}) .
- Registration token (T_{REG}) is shared between all nodes to ensure integrity
- Define a tolerance between latencies (L $_{\rm TOL}$) and ensure $|L_{\rm RD}$ $L_{\rm DEV}| \leq L_{\rm TOL}$

Adversarial Model

A supposed attacker:

- Has complete control over their network, local packets, firmware on sensor, and software on phone
- Can perform man-in-the-middle attacks on packets in their network
- Can relay packets through different devices (i.e. a bridge) to give appearance of different location of origin

Pre-existing credentials are shared from phone to Registration Server and L_{RD} is derived

Registration server assigns T_{REG} to phone who passes this to the WiFi Device

After receiving network credentials, sensor and Registration server derive L_{DEV}

Registration server checks $|L_{_{RD}}$ - $L_{_{DEV}}|$ \leq $L_{_{TOL}}$ and accepts or rejects registration session

Some Development Challenges

- Solution must run in a browser!
- Changing a window from the registration page to the WiFi Device AP
 - RFC 1918
 - No redirecting from broader to smaller network type
- Minimize ping times with WebSockets to avoid overhead of repeated HTTPS requests

Although these requirements may seem strict and obstructive of creative solutions, compliance to them ensures that **anyone from any web browser can carry out the new registration process**.

Outline

- Background Motivation
- Current State of the Device Registration
- New Device Registration Process
- Proximity Validation Tests
- Change of Location Detection (CoLD)

BY

- Change of Location Tests
- Conclusion

Comparing Latencies

- Measured $\rm L_{RD}$ and $\rm L_{DEV}$ over the span of a day
- $L_{RD} L_{DEV} \approx 5ms$
- Measured latency of a bridged setup (L_{BR})
- $L_{BR} L_{RD} \approx 125 ms$
- Set $L_{_{TOL}}$ such that $|L_{_{RD}}$ $L_{_{DEV}}| \leq L_{_{TOL}} \leq L_{_{BR}}$

B

Outline

- Background Motivation
- Current State of the Device Registration
- New Device Registration Process
- Proximity Validation Tests
- Change of Location Detection (CoLD)

BY

- Change of Location Tests
- Conclusion

CoLD Algorithm

- Gather sensor data and poll sensors for traceroute data
- Detect unexpected gaps caused by loss of internet connection/power greater than defined threshold T_{GAP}
- Upon a gap \geq T_{GAP} we take a sample of trusted traceroute data (1 week) and a sample of new traceroute data
- If samples are 90%+ alike, the gap is ignored, else the data is flagged and the sensor is marked for re-registration

142.251.65.x, 108.170.242.x, 209.85.250.x, 142.251.224.x, 142.251.64.x 142.251.65.x, 108.170.242.x, 209.85.250.x, 142.251.224.x, 142.251.64.x

G

A

Ρ

Trusted Data

Trusted Data

Questionable Data

142.251.65.x, 108.170.242.x, 209.85.250.x, 142.251.224.x, 142.251.64.x, x.x.x.x, y.y.y.y, z.z.z.z 142.251.65.x, 108.170.242.x, 209.85.250.x, 142.251.224.x, **209.251.64.x**, a.a.a.a, **b.b.b.**, c.c.c.c

Trusted Data

Questionable Data

142.251.65.x, 108.170.242.x, 209.85.250.x, 142.251.224.x, 142.251.64.x, x.x.x.x, y.y.y.y, z.z.z.z 142.251.65.x, 108.170.242.x, 209.85.250.x, 142.251.224.x, 209.251.64.x, a.a.a.a, b.b.b, c.c.c.c

Trusted Data

Questionable Data

BYU

50%

Acceptance threshold in our system is 90%+

142.251.65.x, 108.170.242.x, 209.85.250.x, 142.251.224.x, 142.251.64.x, x.x.x.x, y.y.y.y, z.z.z.z 142.251.65.x, 108.170.242.x, 209.85.250.x, 142.251.224.x, 209.251.64.x, a.a.a.a, b.b.b.b, c.c.c.c

Trusted Data

Questionable Data

BYU

50%

Outline

- Background Motivation
- Current State of the Device Registration
- New Device Registration Process
- Proximity Validation Tests
- Change of Location Detection (CoLD)

BY

- Change of Location Tests
- Conclusion

In three different geographical regions we did the following:

- 1. Run framework normally for at least 1 week
- 2. Simulate a gap event
- 3. Fetch trusted data and a sample of questionable data
- 4. Compare data samples and assign a score
- 5. Create a confusion matrix to compare accuracy of scoring future data to past data

	L	Μ	N	0		
L	99.1	0	0	0		
Μ	0	99.9	0	0		
Ν	0	0	99.9	23.9		
0	0	0	1.8	98.0		
(a) Rural Area						

Rural Area Test

- Nodes are ~40 miles (64 km) apart
- Compare current node with other node's traceroute data
- Average of ~99.23% same node recognition
- Highest recognition in N to 0 with 23.9%

Inter-City Test

- Nodes are ~8 miles (13 km) apart
- Average of ~98.76% same node recognition
- Highest recognition in A to E with 14.6%

A

B

C

D

E

at			Tays	orsvil	Mount Olympus Wildernesi Pine Lodge Bank Cry
st		Nelson Peak		Jordan	Notice Relation
8 km)		Curry Peak Copperton	DAYBREAK Country R	Sandy Spring Circle Ashley Park	Line Continues Tran Prints Enter Malaments
me		Brecca Knob Lowe Pisak	CampWilliams		Apine
A to E		FOR Top Mourain For Top Mourain	Eagle Mountain	Bene	rten Fork Pleasant Grave Distributions and solution Caryon Grave
		and the second second		12857.	
А	В	C	D	E	A Pleaset View
A 99.9	B 0	C 0	D 0	E 14.6	Parantition
	B 0 96.39	0	D		Perentitive
99.9	0	0	0	14.6	Paramet Vire
99.9 0	0 96.39	0 0	0	14.6 0	Parent Vire
99.9 0	0 96.39 0	0 0 99.7	0 0 0	14.6 0 0	Parent Vire

Park City

Intra-City Test

- Nodes are a few city blocks apart
- Average of ~98.47% same node recognition
- Highest recognition across several pairings with a 66.6%

	F	G	Н	Ι	J	K
F	99.9	0	66.6	0	0	66.6
G	0	96.3	0	0	0	0
Н	66.6	0	99.9	0	0	66.6
Ι	0	0	0	94.9	0	0
J	0	0	0	0	99.9	0
K	66.6	0	66.6	0	0	99.9
K	66.6	0	66.6	Ŭ	0	99.9

(c) Intra-City

Conclusion

- Created a solution that **detects location and change of location**
- **No need of retrofitting** sensors with more hardware
- Experiments indicate a high rate of success with self identifying across:
 - Distant cities
 - Neighboring cities
 - Same city
- Solution can run on **any registering device** with a browser and localization engine
- Framework provides the necessary key for **automatic**, **low-cost location verification** for citizen science devices

Questions?

References

- Gryech I, Ben-Aboud Y, Guermah B, Sbihi N, Ghogho M, Kobbane A. MoreAir: A Low-Cost Urban Air Pollution Monitoring System. Sensors (Basel). 2020 Feb 13;20(4):998. doi: 10.3390/s20040998. PMID: 32069821; PMCID: PMC7071408.
- 2. https://www2.purpleair.com/products/list
- 3. https://www.epa.gov/laws-regulations/summary-clean-air-ac t (Clean Air Act, 1970)

